Essential Technologies for Industrial Machine Design and Prototyping

Mechatronics: Streamlined Approach to Machine Design

Design Requirements

Design Requirements

- Functionality: Milling aluminum parts
- Part size: Up to 10 by 15 cm
- Throughput: 3 parts per minute
- Precision: 5 μm
- Safety: Light curtains, emergency stop
- Cost: <\$50,000

Automotive Part

NI Requirements Gateway

1. Organize requirements

2. Associate details

LabVIEW Example.doc - Microsoft Word

Mechatronics Concurrent Design

Traditional Approach: Design Requirements to Mechanical Concept

Design Requirements

- Milling aluminum
- Up to 10 by 15 cm
- 3 parts per minute
- 5 μm
- Light curtains, emergency stop
- \$50,000

3D CAD Model

Mechatronics Approach: Concurrent Development (Design Tool Integration)

Mechanical Design **Electrical** Design Prototype Control Design Embedded Design

Level of Design Tool Integration

- Ultimate One design tool for all disciplines
- Manual Manually pass data between tools
- Basic Data transferred via standard file formats
 - Motion profile data as CSV file to CAD
- Advanced Complete tool automation
 - NI LabVIEW automating SolidWorks through ActiveX

Open Connectivity to Design Tools

Mathematics

NI **LabVIEW** Math
The MathWorks, Inc. **MATLAB®**Maplesoft **Maple**MathSoft **Mathcad**

Embedded Software

NI LabVIEW Real-Time/Embedded
Wind River Workbench
Analog Devices VisualDSP++
Freescale Code Warrior
Xilinx System Generator

Electrical Design

NI LabVIEW (Motor Sizing)

NI Multisim

ORCAD PSpice

Ansoft Designer

Control Design

NI LabVIEW Control Design
The MathWorks, Inc. Simulink®
Dynasim Dymola
Plexim PLECS

Mechanical Design

SolidWorks SolidWorks
PTC Pro/Engineer
MSC Nastran and Adams
Autodesk AutoCAD

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc.

LabVIEW: Virtual Prototyping Platform

- Intuitive graphical tools for domain experts
- Built-in control design and simulation
- Design tool integration
- Flexible, open architecture
- Ability to target multiple industrial hardware platforms

Virtual Machine Prototyping

Mechanical: Design visualization

Electrical: Motor sizing

Control: Verify control logic

Embedded Software: Easy implementation

Mechanical Design Challenges

Challenge: Understanding the requirements Solution: Electromechanical simulation Benefits:

- ✓ Improved customer communication
 - Confidence builder: showing proof of concept
 - Competitive advantage in the bidding process
- ✓ Improved design team communication
 - Refining design specifications
 - Evaluating high-level architectural design

Electromechanical Simulation Steps

- Determine machine logic
- 2. Generate profile data with virtual prototyping software
- Send to 3D design tool
- 4. Use CAD tool to animate machine functionality

Software Tools

- SolidWorks Professional
 - COSMOSMotion
- LabVIEW Professional
 - Free SolidWorks/LabVIEW ActiveX Interface
 - NI Motion Assistant

Demo: LabVIEW Automates Design Visualization

2. Control

Electrical Design

Electrical Design Challenges

Challenge: Specifying correct motor size

Solution: Sizing virtual motors

Benefits:

- ✓ Apply motor sizing principles interactively
- ✓ Virtually test various motors
- ✓ Estimate control tuning parameter before physical prototype

Virtual DC Motor Sizing

- 1. Acquire motor specifications from data sheet
- 2. Simulate motor response to velocity and torque profile from CAD

Control Design

Control Design Challenges

Challenges:

- Software development in critical path
- Physical prototype needed to test control algorithm

Solution: Develop and test control algorithm on virtual model

Benefits:

- ✓ Get head start on control development
- ✓ Refine control strategy before physical prototyping
- ✓ Detect interferences and resonance

Integrating Control and Mechanical Design

- 1. Develop machine control logic
- Animate model and identify potential issues

Demo: Interference Detection

1. Motion Profile

Control Design Challenges

Challenge: Finding an alternative for conventional PID, which is not tuned for all machine states

Solution: Using advanced PID or other control algorithms **Benefits:**

- ✓ Achieve more precise control
- ✓ Choose from PID, advanced PID, and modelbased and model-predictive control
- ✓ Reduce wear and tear on machine parts

Embedded Software Design

Embedded Software Design Challenges

Challenge: Implementing embedded algorithms

Solution: Using control design software that runs natively on embedded hardware

Benefits:

- ✓ Reduced development time and cost
- ✓ Less chance for translation errors

Physical Prototyping

Algorithm Engineering

Algorithm Engineering

Algorithm Engineering

Prototyping Challenges

Challenge: Choosing the right prototyping platform

- Controller speed and memory
- I/O from specialty signals
- Ability to implement advanced control algorithms
- ✓ Reliably run custom control algorithms
- ✓ Integrate any I/O including machine condition monitoring and vision

Prototyping Hardware

- Desktop PCs
- Industrial PCs
- Programmable automation controllers (PACs)
- Programmable logic controllers (PLCs)
- Custom boards

Programmable Automation Controller (PAC)

- Ruggedness and reliability of PLC
- Software capabilities of PC
- Modular and diverse I/O

SOFTWARE CAPABILITIES

LOS SOFTWARE CAPABILITIES

SOFTWARE CAPABILITIES

FPGA-Based Programmable Automation Controller

NI CompactRIO

Use Case: Digital Photo Kiosk Design

- Design Challenges
 - Precise web tensioning
 - Vibrations from cutter head
 - Varying motor speed
- Solution Mechatronics
 - Mechanical and control simulation
 - Sixth-order control algorithm
 - Two-motor axis dancer system
 - Prototyping with LabVIEW and CompactRIO
- Result
 - 10X faster than competition

Use Case: Digital Photo Kiosk Design

Mechatronics Engineering Process

Demo: Physical Prototype

Additional Design Considerations: Machine Condition Monitoring

- Why use machine vision?
 - Increase product throughput
 - Reduce product inspection cost
 - Use infrared, X-ray
- Applications
 - Manufacturing
 - Product testing
 - Product packaging
 - Robot guidance

Additional Design Considerations: Machine Condition Monitoring

Data Acquisition

Data Analysis

Diagnosis and Control

Conclusion

Mechatronics concurrent development:

- Reduces development time and risk
- Requires design tool integration

